DEPARTMENT OF MATHEMATICS

M.Sc. Mathematics

<u>Core</u>

SEMESTER 1

ME010101	Abstract Algebra	Credits: 4
CO1		
	Analyse the concepts of sets, binary operation	ons, number system and
	permutation	
CO2		
	Discuss the basic concepts about Group, Ring	g and field and the basic
	properties of these algebraic structures	
CO3		
	Construct Group table for finite groups.	
CO4		
	Explain Group Homomorphism by using relationship between groups	
CO5		
	Comment the basic information about Cyclic group, Alternate group,	
	Permutation Group, Direct product of groups and Cosets	

ME010102	Linear Algebra	Credits: 4
CO1		
	Demonstrate the basic concepts of vector spa	ce, basis, dimension and
	computations concerning subspaces	
CO2		
	Explain the concepts of linear transformation	n, linear functionals, dual of a
	functional and their role in studying matrice	S
CO3		
	Analyze the concepts of isomorphism in vector space and apply the	
	definition in different areas of Mathematics	
CO4		
	Describe about determinants and apply the result as permutation and	
	uniqueness of determinants	
CO5		
	Evaluate the characteristic polynomial, eigen values and vectors,	
	annihilating polynomials and minimal polynomial	

MEDIDIDS Dasic Topology Cleans, 4	ME010103	Basic Topology	Credits: 4
---------------------------------------	----------	----------------	------------

CO1	Analyse the concept of topological space with illustration. Identify the transition from metric space to topological space. Describe two general constructions for topological space
CO2	Explain the concepts closure, interior and boundary in topological space and the construction of a topological space using these operators. Study the continuity in topological space
CO3	Identify that homeomorphism is the basic equivalence relation by which objects are classified in topology.
CO4	Mention some general problems in topology and realise that quotient spaces as the solution to one of them
CO5	Describe topological spaces with special properties. Illustrate connectedness in topological space and also distinguish between connected spaces and disconnected spaces
CO6	Develop the knowledge of separation axioms with sufficient examples

ME010104	Real Analysis	Credits: 4	
CO1	Discuss and analyze functions of bounded variation and rectifiable		
	curves.		
CO2			
	Explain the definition and properties of mol	notonic functions, functions	
	functions of bounded variation expressed as	the difference of increasing	
	functions, continuous functions of bounded variation		
CO3	Develop an understanding of curves and part	ths, rectifiable path and arc	
	length, additive and continuity properties of	arc length, equivalence of	
	paths and change of parameter		
CO4	Definition and existence of the Riemann-St	ieltjes integral, properties of	
	the integral, integration and differentiation,	integration of vector valued	
	functions.		
CO5	Identify Sequence and Series of Functions	with illustrations	
CO6	Analyze the definition Uniform convergence, study the relation between		
	Uniform convergence and Continuity, Uniform convergence and		
	Integration, Uniform convergence and Differentiation		
CO7	Discuss Some Special Functions with properties- the exponential		
	functions, logarithmic functions and trigonometric functions		
ME010105	Graph Theory	Credits: 4	
CO1			
	Explain basic concepts of Graphs and directed graphs		
CO2	Analyse some operations on graphs		
CO3			
005	Discuss vertex connectivity and edge connectivity		
CO4			
	Apply algorithms to find minimum weight spanning trees and		

CO5		
	Describe Eulerian and Hamiltonian graphs	
CO6		
	Apply graph colouring in various real-life situations	
CO7		
	Comment on the difference between planar and nonplanar graphs	

ME010201	Advanced Abstract Algebra	Credits: 4
CO1	Analyse the definitions extension fields, algebraic extensions, Geometric	
	Constructions Finite fields	
CO2		
	Discuss and analyze unique factorization domains and Euclidean domains with examples	
CO3		
	Explain Gaussian integers and multiplicative norm on an integral domain with properties	
CO4		
	Discuss the automorphism of fields and dem	ionstrate Splitting fields
CO5		1. 4 1.4
	Analyze, derive and apply the conjugation isomorphism theorem and the	
	isomorphism extension theorem	
CO6	Discuss and derive Calais Theory with Illus	trationa
	Discuss and derive Galois Theory with mus	trations

ME010202	Advanced Topology	Credits: 4
CO1	Explain the concept of compactness, the con-	nection between
	compactness and separation axioms.	
CO2		
	Discuss the importance of Urysohn's lemma and Tietze characterization of normality with its derivation	
CO3	Extend the study to the products of arbitrary families of topological	
	spaces. Understand product topology and related theorems	
CO4		
	Develop the knowledge of evaluating functions into products. Describing	
	evaluation function and its major properties	
CO5		
	Derive the classical theorems - Tychonoff embedding theorem and	
	Urysohn's metrization theorem in general topology	

CO6	
	Study on the concept of a net, as a generalization of a sequence and
	explain its convergence. Get a knowledge of homotopy of paths

ME010203	Numerical Analysis with Python	Credits: 4
CO1	Summarise the basic knowledge about Python, use IDLE to develop programmes	
CO2	Acquire object oriented skills in python. Create simple python programme for solving mathematical problems	
CO3	Define symbols and symbolic operators and using sympy solve problems on factor finding, summing a series and solving inequalities	
CO4	Discuss curve fitting, polynomial interpolation, Lagranges method, Newtons method and its limitations	
CO5	Explain the numerical method for finding the roots of equation by using bisection and Newton Raphson method	
CO6	Create programs for curve fitting, interpolation, roots of mathematical equations using python programming	
CO7	Create python programs on numerical integration	
ME010204	Complex Analysis	Credits: 4
CO1	Explain spherical representation and stereog	graphic projection
CO2	Analyse different types of linear transformations in complex plane	
CO3	Discuss the fundamental theorems in complex integration	
CO4	Apply fundamental theorems to evaluate complex integration	
CO5	Describe local properties of analytic functions	

ME010205	Measure Theory and Integration	Credits: 4
CO1		
	Explain the basic concepts of Real Analysis	
CO2		
	Define Sigma algebra of sets	
CO3		
	Discuss the basic concepts of Lebesgue measure and Measurable functions	
CO4		
	State some theorems on Measure theory	
CO5		
	Analyse the properties of General Measure s	pace
CO6		
	Explain product measure and properties	

ME010301	Advanced Complex Analysis	Credits: 4
CO1		
	Explain basic properties of harmonic functions	
CO2		
	Describe Dirichlet's problem	
CO3		
	Analyse general properties of sequences of analytic functions	
CO4		
	Discuss partial fractions and factorization	
CO5		
	Describe Riemann Zeta function	
CO6		
	Study normality, compactness and Reimann	Mapping Theorem

ME010302	Partial Differential Equations	Credits: 4
CO1	Study the method of finding the orthogonal trajectories of a system of curves on a surface	
CO2	Explain pfaffian differential forms, its equations and related theorems. Solve problems of pfaffian differential equations in two and three variables	
CO3	Solve linear and nonlinear PDE of first order. Using the theory of linear PDE, determine the systems of surfaces orthogonal to a given system of surfaces	
CO4	Explain compatible system of first order PDE and find their solutions, Charpit's method and solve related problems	
CO5	Illustrate Jacobi's method. Describe the origin of second order PDE and find the solution of such problems	
CO6	Find the solution of second order PDE using the method of separation of variables. Illustrate Monge's method	
ME010303	Multivariate Calculus and IntegralTransforms	Credits: 4
CO1	Explain Different forms of integral transforms and convolutions	
CO2	Discuss and derive the Weirstrass theorem, the Fourier integral theorem and the convolution theorem for Fourier transforms	
CO3	Explain the relation between directional derivatives and continuity, the total derivative in terms of partial derivatives	
CO4	Discuss the matrix of a linear function and The Jacobian matrix, Implicit functions and extremum problems	
CO5	Analyze and derive a sufficient condition for differentiability, equality partial derivatives, the inverse function theorem.	

CO6			
	Analyze the extrema of real valued functions of one variable and		
	generalise it to functions of several variables		
C07	Discuss primitive mappings partitions of unity and effect of change of		
	variables on a multiple integral		
ME010304	Functional Analysis Credits: 4		
CO1			
	Explain the meaning of functions and functionals with example. A		
	background in linear algebra and ordinary calculus, is sufficient as a		
	prerequisite		
02	Analyse different spaced like metric space, normed space and inner		
	product space and the relevance of this in subspace, compactness etc		
CO3			
	Discuss the concepts of orthogonal complement, direct sum, orthonormal		
~~ .	and the comparison with Linear Algebra		
CO4	Define the better feeling for the difficulties encouraged in the transition		
	from a Hilbert space to general Banach Space		
CO5			
	Describe the Hilbert adjoint operator and was suggested by problems in		
~ ~ ~ ~	matrices and linear differential and integral equations.		
CO6	Discuss three important class of equation self adjoint unitary and normal		
	operators which play a key role in various applications		
ME010305	Optimization Technique Credits: 4		
CO1			
	Formulate Optimization problems		
CO2			
CO3	Solve linear programming problem using various methods		
005	Solve integer programming problem.		
CO4			
	Explain 0-1 variables and goal programming		
CO5	Explain minimum path problem and maximum flowproblem		
C06	Exprain minimum paur problem and maximum nowproblem		
	Discuss basic concepts of non linear programming and Identify the		
	methods and solve programming problems when the objective function		
	or constraints are non linear.		

r		
CO1	Explain the fundamentals of functional analysis which originate from classical analysis	
CO2	Analyse the concepts behind the category theory. Define uniform boundedness theorem, Baire's theorem and application in Fourier series.	
CO3	Explain the three types of convergence in operator which turn out to be of theoretical as well as practical value	
CO4	Discuss the concepts of resolvent set and spectrum of operators, their properties and define the spectral mapping theorem. Explain the use of complex analysis in spectral theory	
CO5	Define the compact linear operator on normed space and their spectrum which play a central role in the theory of integral equations and various problems of mathematical physics.	
CO6	Study spectral theory of bounded self-adjoint linear operators, its properties, positive operators and projection operators	
ME010402	Analytic Number TheoryCredits: 4	
CO1	Explain the Arithmetic functions, Dirichlet product, Dirichlet inverses and convolutions, Generalized convolutions $\mu(n)$, $\phi(n)$, $\Lambda(n)$, $\lambda(n)$,	
CO2	Discuss and derive the relation connecting μ and ϕ , the Möbius inversion formula with generalization	
CO3	Identify Multiplicative functions and completely Multiplicative functions with their inverses	
CO4	Compute Average order of Arithmetical functions and apply it to the distribution of lattice points visible from the origin	
CO5	Apply partial sums of Dirichlet product to $\mu(n)$ and $\Lambda(n)$.	
CO6	Discuss the relation connecting Chebyshev's functions, equivalent	
	forms of Inequalities for $\pi(n)$ Shapiro's tauberian theorem	
CO7	Analyse the definitions and basic properties of congruences, Residue classes and complete residue system, Linear congruences, Reduced residue system and Polynomial congruences modulo p	
ME800401	Differential Geometry Credits: 3	
CO1	Explain the importance of level sets and graph of a function. Find and sketch level curves and graph of certain functions and explain its geometrical interpretation.	
CO2	Illustrate vector fields and its applications in other fields. Establish existence and uniqueness theorem for integral curves. Study the relation connecting level set and tangent space	

~ ~ ~		
CO3	Describe n-surface with illustration and derive Lagrange multiplier theorem. Study vector field on n- surface and its orientation. Understand gauss map. Find the spherical image of the compact connected oriented n- surface	
CO4	Develop a knowledge of geodesic in an n- surface with examples. Discuss the concept parallel transport and derive the property that the parallel transport is invariant under isometrics	
CO5	Describe Weingarten map with two major properties and its geometrical interpretation	
CO6	Find the curvature of plane curves and verify that the parametrization of plane curves can be used to evaluate integrals over the curve. Discuss differential 1-forms and their integrals	
CO7	Study on normal curvature, gauss Kronecker curvature and principal curvature with illustration	
ME800402	Algorithmic Graph Theory Credits: 3	
CO1	Analyse the basic concepts of graphs	
CO2	Discuss various types of graphs	
CO3	Explain different graph algorithms	
CO4	Find complexity of various algorithms	
CO5	Define trees, distance, and matchings	
CO6	Explain networks	
ME800403	Combinatorics Credits: 3	
CO1	Analyse the concepts of permutation and combination	
CO2	Apply injection and bijection principle for solving problems	
CO3	Evaluate arrangements and selections with repetitions	
CO4	Apply Pigeonhole principle for solving problems	
CO5	Describe Ramsey numbers and bounds for Ramsey numbers	
CO6	Apply generalised principle of inclusion and exclusion for solving problems	
CO7	Discuss dearangements	