DEPARTMENT OF MATHEMATICS

B.Sc. Mathematics(Model 1)

<u>Core</u>

SEMESTER 1

MM1CRT01	Foundations of Mathematics	Credits: 3
CO1	Discuss mathematical statements	
CO2	Analyse mathematical statements using t	ruth tables
CO3	Explain the idea behind construction of p	proofs
CO4	Discuss sets and functions	
CO5	Analyse different properties of relations	
CO6	Describe different methods to find roots of	of an equation.
CO7	Analyse the appropriate methods to find t	he solution of a cubic equation

SEMESTER 2

MM2CRT02	Analytic, Geometry, Trigonometry and Differential Calculus	Credits: 3
CO1	Find equation of tangents and normal of a	a conic
CO2	Evaluate chords of a given conic	
CO3	Explain polar coordinates	
CO4	Describe equation of lines, circles and conics in polar coordinates	
CO5	Understand the idea of circular and hyperbolic functions	
CO6	Find the real and imaginary parts of functions of complex variables	
CO7	Find the summation of some infinite series	
CO8	Evaluate successive differentiation	
CO9	Solve indeterminate forms	

MM3CRT01	Calculus Credits: 4	
CO1	Analyse the expansion of functions using Maclaurin's theorem and Taylor's theorem.	
CO2	Explain concavity, points of inflexion, curvature, evolutes, length of arc as a function derivatives of arc	
CO3	Describe radius of curvature, evolutes and involutes, properties of evolutes, asymptotes and envelopes.	
CO4	Solve partial derivatives and Lagrange multipliers.	
CO5	Determine volume of surface using different methods.	
CO6	Determine arc length and areas of surface of revolution	

CO7	Discuss examples to find area using double integration
CO8	Determine the volume of a surface using triple integrals in cylindrical and spherical coordinates.

SEMESTER 4

MM4CRT01	Vector Calculus, Theory of Numbers and Laplace Transform	Credits: 4
CO1	Analyse vector functions.	
CO2	Describe line integrals, vector fields and line integrals, path independence.	
CO3	Discuss Green's theorem, Stokes' theorem, Divergence theorem.	
CO4	Illustrate examples to find the arc length and curvature.	
CO5	Illustrate examples to verify Green's theorem, Stokes' theorem and Divergence theorem.	
CO6	Describe properties of congruence, Fermat's and Euler- Phi function	s theorem, Wilson's theorem
CO7	Explain Laplace transform, linearity and exi convolution and integral equations.	stence of Laplace transform,
CO8	Solve initial value problem.	

MM5CRT01	Mathematttical Analysis	Credits: 4
CO1	Define Real number system, finite and infini function, absolute value, Intervals and real h	ite set, function, limit of a ine
CO2	Explain the algebraic, completeness and orde supremum and infimum of a set	er properties of real number,
CO3	Define sequence and their limits, subsequent and their examples	ce, monotone sequence, series

CO4	Define convergence and divergence of a sequence and test whether a given sequence is convergent or not.
CO5	Explain theorems based on Sequences and series
CO6	Discuss about absolute convergence and non absolute convergence of a series.
CO7	Analyse the concept of limit of functions, its theorems and extension
CO8	Compute the limit of a given function at a point

MM5CRT02	Differential Equations	Credits: 4	
CO1	Analyse the nature of differential equations		
CO2	Solve and apply the solution of first second equations	and apply the solution of first second and higher order differential ons	
CO3	Explain the idea behind the orthogonal trajectory and families of curves		
CO4	Discuss the concepts of solution of a differential equation and the power series solution		
CO5	Analyse the power series method to solve the differential equations		
CO6	Develop the ability to apply the solution of t theoretical and practical problems	the differential equation in	
C07	Analyse the concepts of partial differential e	quations and its solutions	

MM5CRT03	Abstract Algebra	Credits: 4
CO1	Recall the concepts of sets, binary operation permutation	s, number system and
CO2	Explain the basic concepts about Group, Rin properties of these algebraic structures	g and field and the basic
CO3	Construct Group table for finite groups.	

CO4	Discuss various examples to thorough the concepts
CO5	Explain Group Homomorphism by using relationship between groups
CO6	Discuss the basic information about Cyclic group, Alternate group, Permutation Group, Direct product of groups and Cosets
CO7	Extend the concept of group homomorphism to ring homomorphism
CO8	Determine whether a given set with associated operations is a group, ring or field by checking its properties.

MM5CRT04	Environmental Mathematics and Human Rights	Credits: 4
CO1	Discuss the multidisciplinary nature of environmental studies	
CO2	Explain the role of individual in conservation of natural resources	
CO3	Describe natural resources such as forest res mineral resources, energy resources, land re	ources, water resources, sources, etc.
CO4	Analyse the concept of ecosystem	
CO5	Define pollution, its causes, effects and mea	asures
CO6	Explain the importance of Fibonacci number	rs in nature
CO7	Explain Golden ratio	
CO8	Describe human rights	

MM5GET02	Applicable Mathematics – Open Course Credits: 4
CO1	Explain the concepts in simplification
CO2	Analyse problems in ration and proportion, percentage, profit and loss
CO3	Find heights and distance using trigonometry
CO4	Evaluate simple interest and compound interest.
CO5	Solve problems in time and work, work and wages and time and distance
CO6	Discuss exponential series and logarithmic series
CO7	Find area and perimeter of polygons
CO8	Solve problems on simple factorisation of quadratic and cubic polynomials

MM6CRT01	Real Analysis	Credits: 4
CO1	Identify the continuous functions as a very arises in real analysis. Understand the conc establish the fundamental properties of cor	special class of functions that cept of continuity and attinuous functions
CO2	Distinguish the concepts continuity and un the sufficient condition for uniform continu functions that are not necessarily continuou	iform continuity. Also explain aity. Study on monotone as. Illustrations are provided
CO3	Concentrate on mathematical aspects of de in geometry, physics and economics	rivative and it's applications
CO4	Develop the knowledge of Riemann integra and it's applications	ability of real valued functions
CO5	Explore the connections between the notio integral. Establish the necessary and suffic be Riemann integrable and mention some of	ns of the derivative and the ient condition for a function to of its applications
CO6	Explain the concept of sequences of function Detailed study on uniform convergence an and derive the properties of exponential an	ons and their convergences. d apply this concept to define d logarithmic functions

MM6CRT02	Graph Theory and Metric Space Credits:4
CO1	Define Graph, types of graphs, subgraphs, vertex degree, paths and cycles
CO2	Construct adjacency matrix and incidence matrix of each graphs
CO3	Explain the concepts of trees and its properties
CO4	Analyse the concepts of bridge, spanning tree, cut vertex and connectivity
CO5	Explain Euler's tours, Hamiltonian cycle and apply these concepts in Chinese postman problem and travelling salesman problem.
CO6	Define metric space, open set, closed set, cantor set.
CO7	Discuss the examples of metric space, open set and closed set.
CO8	Explain the concepts of convergence, completeness and continuous mapping in metric spaces

MM6CRT03	Complex Analysis	Credits: 4
CO1	Explain functions of complex variables	
CO2	Analyse different concepts of functions of a	complex variable
CO3	Evaluate integrals of a function of complex	variable
CO4	Discuss some important theorems in complex	x analysis
CO5	Explain the convergence of sequence and ser	ies
CO6	Evaluate problems using Taylor's theorem a	nd Laurent's series
CO7	Describe singular points and residues of a co	omplex function
CO8	Apply residue in evaluating integrals	

MM6CRT04	Linear Algebra	Credits: 4
CO1	Analyse the concept elementary matrices, the	e process of Gaussian elimination
CO2	Understand and analyze the definitions of Linear combinations of rows (columns), linear independence of columns, and row equivalent matrices	
CO3	Define and compute Hermite or reduced row column rank, normal form	v-echelon matrices, rank of a matrix,
CO4	Understand the definitions vector spaces, su vectors, spanning set, linear independence a	bspaces, linear combination of nd basis
CO5	Understand the notions of Linear transforma Nullity, Linear isomorphism with examples	tions, Kernel and range, Rank and and properties
CO6	Develop the knowledge of Characteristic polynomial, Characteristic equation, Algebraic multiplicities, Eigen space, Geometric multiplicities, Eigenvector, diagonalisation and Tri-diagonal matrix	
CO7	Solve the problems involving Characteristic equation, Algebraic multiplicities, Eigen space, Geometric multiplicities, Eigenvectors and eigen spaces	
MM6CBT01	Operations Research - Elective	Credits: 3
CO1	Understand the origin, definition, background	ls of linear programming
CO2	Explain duality in programming.	
CO3	Solve problems on transportation and assignment	nent
CO4	Analyze the theory behind game theory	

Complementary

SEMESTER 1

MM1CMT01	Partial Differentiation, Matrices, Trigonometry And Numerical Analysis	Credits: 3
CO1	Derive the expansions of sinn θ , $\cos n\theta$, $\tan \theta \sin^n \theta \cos^n \theta$	
CO2	Discuss circular and hyperbolic functions an series based on C+iS method.	d summation of infinite
CO3	Explain rank of a matrix, transformations of and non-linear homogeneous equations, Cay	a matrix, system of linear yley Hamilton theorem.
CO4	Determine the rank of a given matrix by red	ucing it to normal form.
CO5	Determine the characteristic roots and characteristic vectors of a square matrix.	
CO6	Write the given system of linear equations in	n matrix form.
CO7	Solve the system of linear equations using e	lementary transformations.
CO8	Determine an approximate root of an equation	on using different methods.

MM2CMT01	Integral Calculu and Differential Equations Credits: 3
CO1	Determine volumes using cross-section method and cylindrical shell method.
CO2	Find the arc lengths and areas of surface of revolution.
CO3	Explain double and triple integrals over rectangles, double integrals over general regions.
CO4	Determine the area of a region using double integration and volume of a surface using triple integrals in rectangular coordinates.
CO5	Discuss separable variables, exact differential equation, homogeneous equations and Bernoulli's equations.
CO6	Solve the equations using substitution method.
CO7	Explain surfaces & curves in three dimensions, linear equations of first order.
CO8	Determine the solution of equations of the form $dx/p = dy/q = dz/r$

SEMESTER 3

MM3CMT01	Vector Calculus, Analytic Geometry and Credits: 4 Abstract Algebra
CO1	Describe curves in space and their tangents, curvature and normal vector of a curve, directional derivatives and gradient vectors.
CO2	Describe line integrals, vector fields and line integrals, path independence.
CO3	Discuss Green's theorem in the plane, Stokes' theorem, Divergence theorem.
CO4	Determine the arc length and curvature of a curve.
CO5	Illustrate examples to verify Green's theorem, Stokes' theorem and Divergence theorem.
CO6	Describe polar coordinates, conic sections and conics in polar coordinates.
CO7	Explain groups, subgroups, cyclic groups, permutation groups and group homomorphism
CO8	Determine whether a given set with an operation is a group.

MM4CMT01	Fourier Series, Laplace Transform And Complex AnalysisCredits: 4
CO1	Analyse the concepts of periodic functions, trigonometric series, Fourier series, odd and even functions.
CO2	Explain the concepts of Laplace transform, linearity, shifting, differentiation and integration of transforms.
CO3	Explain Cauchy Riemann equation, Laplace equation, Exponential function, Trigonometric function, Hyperbolic function
CO4	Describe line integral in the complex plane, Cauchy's integral theorem, Cauchy's integral formula, and derivatives of analytic functions.
CO5	Discuss examples to thorough the concepts of analytic function
CO6	Determine the powers and roots of complex number.
CO7	Determine the polar coordinates of complex number.
CO8	Determine whether a function is analytic or not.