

DEVASWOM BOARD COLLEGE THALAYOLAPARAMBU (Affiliated to Mahatma Gandhi University, Kottayam)

CRITERION II *Teaching Learning and Evaluation*

Submitted to The National Assessment and Accreditation Council (NAAC) February 2024

Midayikunnu P.O.Thalayolaparambu, Kottayam, Kerala - 686605

2.6.2

Attainment of POs and COs

Sample of mapping of COs to POs of MSc Chemistry course

Programme Outcomes for MSc programme

On completion of the programme, the student will achieve the following programme outcomes

PO1	Domain Knowledge	Construct deeper knowledge and expertise in specialized						
		fields and integrate knowledge across subject areas.						
PO2	Creative and	Develop a passion for experimentation, critical appraisal and						
	Interdisciplinary	an engagement with others' perspectives; enhance						
	Thinking	interdisciplinary thinking skills to formulate creative						
		solutions to real life problems.						
PO3	Communication	Communicate effectively, critically assess and review ideas						
	and Competency	and then present new perspectives in seminar and project						
		presentations.						
PO4	Research skills &	Acquire research skills in concerned subjects and allied fields;						
	Ethical practices	apply domain-specific ethical principles and practices in						
		academic, professional and social engagements.						
PO5	Leadership Skills	Demonstrate democratic values, commitment to social						
		service, employ effective team-building and management						
		strategies; work constructively and lead diverse teams;						
		develop strategic thinking with people skills.						
PO6	Career readiness	Choose from diverse career options available in local,						
	and higher	national and international realms; pursue higher education in						
	education	multidisciplinary fields.						
PO7	Lifelong Learning	Inculcate a habit of self-learning throughout life, through self-						
		paced and self-directed learning aimed at personal						
		development; adapting to the changing demands of the work						
		place through reskilling.						

Course Outcome for the course – Quantum Chemistry and Group Theory

On completion of the course, the student will be able to

CH500103	Quantum Chemistry and Group Theory Credits: 4
CO1	Deduce various symmetry elements in molecules and classify them
	into different point groups
CO2	Apply the concept of GOT to construct character tables of simple
	point groups and also to deduce the bonding of simple molecules
CO3	Demonstrate the fundamental concepts of quantum mechanics
CO4	Apply the concepts to simple systems
CO5	Summarize on the concept of quantization of angular momentum

Sample question paper DEPARTMENT OF CHEMISTRY, DEVASWOM BOARD COLLEGE, THALAYOLAPARAMABU MSc CHEMISTRY SEMESTER I MODEL EXAM, MARCH 2023 CH500103 - QUANTUM CHEMISTRY AND GROUP THEORY

Time: 3 hrs

Weight: 30

Course C	ourse Outcomes						
CO1	Deduce various symmetry elements in molecules and classify	Analyse	PO1,PO2				
	them into different point groups						
CO2	Apply the concept of GOT to construct character tables of simple	Apply	PO4, PO6				
	point groups and also to deduce the bonding of simple molecules						
CO3	Demonstrate the fundamental concepts of quantum mechanics	Understand	PO1				
CO4	Apply the concepts to simple systems	Apply	PO1				
CO5	Summarize on the concept of quantization of angular momentum	Understand	PO1				

SECTION A (Answer any 8 questions, each carries a weight of 1)

1.	What are block factored matrices?	CO1
2.	Formulate the matrix representation for centre of inversion.	CO1
3.	What are isomorphic groups?	CO1
4.	What are the classes C_{3v} and C_{2h} point groups?	CO1
5.	State the Identity rule and inverse rule for point groups.	CO1
6.	Discuss briefly on Blackbody radiation.	CO3
7.	Plot the radial distribution curve for 2s and 2p orbitals.	CO4
8.	What are symmetric and antisymmetric wave functions?	CO5
9.	Write a note on spin functions.	CO5
10.	Verify Uncertainty principle using commutative relation in quantum mechanics.	CO3

SECTION B (Answer any 6 questions, each carries a weight of 2)

11. What are the symmetry operations generated by S_7 and S_8 ? Identify the distinct operation	s. CO1
12. Discuss on the point groups associated with molecules of high symmetry?	CO1
13. Write a note on Hermann Mauguin symbols.	CO1
14. Write short notes on screw axis and glide plane.	CO1
15. Derive the energy for a particle in a 3-D box. Write the wave function of an electron of en	nergy E=
$(1.125 \text{ h}^2/\text{ml}^2)$ present in a cubic box.	CO4
16. Set up the Schrödinger equation and find eigen values and eigen functions for a particle of	n a ring.
	CO4
17. Explain the relationship between Cartesian and Cylindrical polar coordinates. Convert the	Cartesian
coordinates (1,1,3) into Cylindrical polar coordinates.	CO3
18. What are ladder operators? Evaluate [LxLy].	CO5

SECTION C (Answer any 2 questions, each carries a weight of 5)

19.	How will you construct the SALCs of BF ₃ molecule?	CO2
20.	What are character tables? Apply the GOT to derive the character table of C _{4v} point group.	CO2

- 21. Derive the complete wave function and energy for a particle on a sphere.
- 22. Set up the Schrodinger equation for hydrogen atom, in spherical polar coordinates and separate it into three ordinary differential equations by the method of separation of variables.

Mark sheet (excel format)

	Course name: Ou:	infum Chara	MARK SHEET	r	
	Question Number	Grade	and Group Theory Grade Point	Taxonomy	C0
	1	A+	-		0
	2	A	5	Analyze	COL
	3	A	4	Analyze	COI
	4		4	Analyze	CO1
	5	A+	E	Analyze	COI
	6	А	3	Analyze	CO1
	1	В	4	Understand	CO3
	8	A+	5	Apply	CO4
	9			Understand	CO5
	10	A+	5	Understand	CO5
	11	A+	10	Analuza	CO3
	12	A	8	Analyze	<u>CO1</u>
	14	A	8	Analyze	
	15	D		Analyze	<u> </u>
	16	В	6	Apply	<u>CO4</u>
	17	A	8	Apply	CO4
	18	A	8	Understand	CO3
	19	A	20	Understand	CO5
	20		20	Apply	CO2
	21			Apply	CO2
1	22	A+	25	Apply	CO4
		Т	otal - 128; GPA -	4.26	CO4
	All .				

CO-PO	mapping
	mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2					
CO2				1		2	
CO3	3						
CO4	2						
CO5	1						

Class Performance

Name of Programme	MSc Chemistry						
Name of Course	CH500103 – Quantum Chemistry and Group Theory			Theory			
with code							
Name of faculty		Dr. Re	malakshmy P	oduval			
Semester	Ι						
No. of students			15				
Course Outcome		0⁄	6 of attainme	nt			
	Model exam	Seminar	Assignment	Class involvement	Average		
CO1	68	85	100	95	87		
CO2	64	63	100	85	78		
CO3	82	88	100	100	92.5		
CO4	47	54	100	67	67		
CO5	38	43	100	54	58.75		
Average	59.8	66.6	100	80.2	76.65		

Attained